Air Pollution Control Innovations

Catalyst Calciner Particulate SO2 Scrubber

Posted by Andy Bartocci on Tue, Jan 18, 2022 @ 08:00 AM

Catalyst Calciner ScrubberA catalyst production facility operates a calciner that generates a small stream of hot dirty gas. The exhaust is cleaned using a particulate/SO2 scrubber followed by a vertical entrainment separator.  The configuration is problematic for operation.  The scrubber requires a long duct run from near grade to the scrubber inlet flange.  There is a U-shaped bend to the inlet flange.   Particulate condenses in the duct and plugs over time.  The process is routinely shut down to clean out accumulated material. This limits production capacity.  The customer sought to redesign the scrubber to increase production while maintaining as much of the original equipment as possible.

The customer selected Envitech to redesign and supply a scrubber to be retrofit into the existing system.  The scrubber inlet was replaced with a high efficiency Hastelloy Venturi scrubber for particulate removal.  The Venturi length was significantly decreased and oriented at an angle to the entrainment separator inlet.  The shorter distance and angled orientation significantly reduced the duct run from the calciner outlet to the scrubber inlet, minimizing fouling potential.

The top of the entrainment separator was replaced with a packed bed absorber to neutralize and remove SO2.  Structural modifications to the existing vessel ensures the  new packed bed is well supported.

After the Venturi, the gas enters the bottom of the packed bed and travels vertically upward, counter current to downward flowing water.  Excess water from the Venturi and the packed bed collects in a common sump.  Caustic solution injected into the recirculation line neutralizes acid gases.  Liquid recirculates back to the Venturi throat and top of the packed bed.  The gas passes through a vertical entrainment separator above the packing to remove water droplets before exiting the system.

The scrubber was put into service in early 2021.  A continuous emissions monitoring system (CEMS)  confirms emission limits are met. The duct clean out time has been reduced from 24 to 36 hours to < 1 hour.  System uptime has improved from < 60% to > 80%, enabling higher production capacity. The Venturi scrubber is significantly smaller in size, making replacement cost less expensive.   The scrubber is designed to meet the process conditions below:

  • Flow rate: < 1,000 acfm
  • Inlet Temp, 400 oF
  • Particulate removal: > 99.8%
  • SO2 removal: > 99.9%

Click on the link below to download literature about the catalyst Calciner scrubber.

Download Literature

 

Topics: Venturi scrubbers, Scrubbers, SO2 Scrubber, Acid Gas, Packed Bed Absorbers, Packed Bed Scrubbers, Wet Scrubbers

BP Amoco Purified Terephthalic Acid (PTA) Plant Quencher

Posted by Andy Bartocci on Wed, Jan 29, 2020 @ 09:00 AM

Venturi_Quencher_BP_AmocoBP Amoco was engaged in expanding production capacity for purified terephthalic acid (PTA) at the CAPCO 6 and Zhuhai 1 petrochemical plants in China. PTA is used in the manufacture of polyester resin and polyethylene terephthalate (PET) plastic bottles. It is also widely used in the pharmaceutical, food, textile and packaging industries. The expansion projects were part of efforts to achieve process simplifications and lower capital costs. Project goals were to reduce plot area and the number of equipment pieces by 40%

The process includes up to 530,000 acfm of corrosive exhaust gases that are cooled to the adiabatic saturation temperature. Cooling large flow rate gases is challenging due to potential void spaces in the water spray system. Splitting flows into smaller exhaust trains is a common method to overcome this challenge. However, this adds ductwork and installation cost. For capital cost reductions, the customer wanted to saturate the gas in a single train in a horizontal arrangement to conserve space and to minimize ductwork.

BP Amoco PTA Venturi QuencherThe customer selected a custom engineered Envitech horizonal quencher. The material of construction is Hastelloy C276 to provide corrosion resistance at high inlet temperatures. A proprietary internal water injection and throat design splits the stream inside the vessel to ensure turbulence for mixing gases and water. Gases accelerate through the throat areas in combination with a recirculated water spray system. A small pressure drop cools gases over a wide flow rate operating range and minimizes the number of nozzles. The water spray header is removable to facilitate nozzle replacement and maintenance. The vessel is 13 feet in diameter in a horizontal arrangement. This allows the quencher to be shop fabricated so that inspection and quality assurance are done in a controlled environment. The unit is shipped as one piece.

The Envitech quenchers were installed in 2001 and operate to the design parameters summarized below. The proprietary design contributed to BP Amoco’s goals to reduce footprint area, process equipment pieces, and capital cost.

DESIGN PARAMETER

  • Max flow rate: 530,000 acfm
  • Inlet temperature: 560oF
  • Inlet pressure: 518 In. W.C. 
  • Guarantee: Cooling to +/- 40oF of the saturation temperature

Click on the link below to download a case study and related wet scrubber literature.

Download Literature

Topics: Venturi scrubbers, Scrubbers, quenchers, Wet Scrubbers

Peat Dryer Horizontal Venturi Scrubber

Posted by Andy Bartocci on Thu, Jan 09, 2020 @ 05:30 AM

An agricultural solutions company, American Peat Technology, transforms locally harvested unprocessed peatPeat Dryer Horizontal Venturi into a consistent granular media. The media is used as a natural microbial carrier to inoculate millions of acres of food crops each year. The transformation process relies on drying harvested material in industrial rotary dryers. A fraction of the material becomes entrained in the flue gas as particulate emissions. The facility is expanding operations to double the capacity. A scrubber solution is needed to reduce total plant particulate emissions.

The customer selected two identical Envitech horizontal Venturi scrubbPeat Dryer Horizontal Venturi_long viewers. The scrubbers are comprised of a variable throat Venturi scrubber and a chevron style entrainment separator mounted on an equipment skid. The scope of supply for each scrubber includes a control system, re-circulation pump with pre-assembled piping, valves and fittings. Instruments are pre-mounted in the piping where possible and pre-wired to a junction box on the skid. The horizontal configuration provides a compact design to fit inside the building with easy maintenance access to valves and instruments.

The skid arrangement allows the scrubbers to be shop assembled and tested prior to shipment.  The combination of a variable throat Venturi with a chevron style mist eliminator allows a wide turn-down ratio while maintaining high performance. The use of a wet scrubber instead of a bag-house eliminates the potential for bag fires that could be caused by occasional hot embers entrained in the gas.  The facility is also able to make use of the latent heat absorbed by the scrubber, making use of hot recirculated scrubber water to thaw out frozen peat in the winter before it is fed to the dryers. 

The scrubbers were commissioned in December 2019 and are now operational. Both scrubbers are used for two dryers providing a wide operating range. The scrubbers meet the design parameters listed below:

DESIGN PARAMETERS

  • Inlet flow rate: 25,000 acfm
  • Inlet temperature: 185oF
  • Inlet Particulate: 15 lbs/hr 
  • Particulate Removal: > 99%

Click on the link below to download a case study and other Venturi scrubbing literature.

Download Literature

Topics: particulate control, Venturi scrubbers, Scrubbers, Wet Scrubbers

Mineral Processing Venturi Scrubber

Posted by Andy Bartocci on Wed, Dec 04, 2019 @ 08:04 AM

US Magnesium is implementing an electrolytic expansion project located in Rowley, UT. A scrubbing system isUS Mag Venturi Scrubber needed to remove particulate from a chlorine gas stream that originates in the anode compartments of electrolytic cells that produce magnesium metal. A significant portion of the particulate is less than 1 micron in size, making it difficult to remove.

Chlorine is an important by-product of the electrolytic process. Scrubbed chlorine flows to a chlorine plant for further processing and liquefaction. The scrubbing equipment must be designed and constructed in a manner to minimize air in-leakage and chlorine emissions. Materials of construction must be selected to withstand severe corrosive characteristics of > 90% chlorine (Cl2) gas.

Particulates in the gas leads to maintenance associated with downstream filters in the chlorine plant. It is therefore necessary to maximize removal efficiency to minimize filter maintenance costs.

The customer selected an Envitech high efficiency Venturi Scrubber. The equipment includes a fixed throat fiber reinforced plasUS Mag Venturi Scrubber Fanstic (FRP) Venturi scrubber and horizontal chevron style entrainment separator. Additional scope of supply includes instruments, pre-assembled pump skid with redundant titanium pumps (1 operating and 1 spare), pre-assembled CPVC piping, redundant fans with titanium wheel and housing, interconnect FRP ductwork, dampers, and equipment skid and platforms.

Because a large fraction of particulate is submicron in size and difficult to remove, the fans and vessels are designed to operate at -70” water column pressure drop.

An Envitech Venturi scrubber was installed on the original process in 1999. The new scrubber for the expansion project was installed in 2011. Both systems continue to operate with high reliability and uptime. The table below summarizes key design parameters for the new Venturi scrubber.

DESIGN PARAMETER

  • Inlet flow rate: 8,200 acfm
  • Inlet temperature: 130oF
  • Gas Composition:  > 90% Cl2 gas
  • Pressure drop: 60" W.C.
  • PM Removal: > 75%

Click on the link below to download a case study and other Venturi scrubbing literature.

Download Literature

Topics: particulate control, Venturi scrubbers, Scrubbers, Wet Scrubbers

Hot Mix Asphalt Dryer Emissions Control

Posted by Andy Olds on Wed, Dec 04, 2019 @ 06:30 AM

Hot mix asphalt (HMA) plants combine aggregate and petroleum byproducts to form paving material.  HMA plants can be permanent, transportable (skid-mounted), or portable.  For large asphalt projects, it is economical to use transportable or portable HMA plants so as to set up near the project and reduce the delivery time of asphalt to the site.  Large HMA manufacturers thus transport their manufacturing equipment from site to site.Env Horz VS scrub

The most common HMA plant is a batch mix plant.  A batch plant consists of an aggregate dryer to dewater the aggregate, a mixer to combine the aggregate with asphalt cement, and a load-out bay for transferring the final product to trucks for transport.  Auxiliary equipment includes a cyclone for aggregate collection after the dryer, a secondary collection device for particulate emissions, a blue haze control device to curb VOC emissions.  Reclaimed asphalt pavement (RAP) is typically used to reduce costs and promote sustainability within the industry.  The stage at which RAP is introduced depends on the qualities of the RAP and the desired properties of the final asphalt product.

According to the EPA, there are two primary techologies for the secondary collection devices: Venturi scrubbers and baghouses.  Venturi scrubbers are wet devices that capture particulate through inertial impaction.  Venturis are fractional efficiency devices capable of efficiently capturing particulate as small as 1 micron.  Venturis are inherently self cleaning: water sprays continuously from the Venturi throat and the accelerated gas shears any wall buildup.  Thus, Venturis are excellent in the removal of sticky particulate that would foul other forms of particulate control. Also, as a wet process, Venturis have the ability of capturing condensables and water soluble vapors.  The alternative technology for secondary particulate capture is a baghouse.  A baghouse achieves particle collection by filtering the gas through a physical barrier. Baghouses can efficiently remove submicron particulate, provided that the particulate is filterable.  Baghouses are not able to capture condensibles, but can capture some acid gases if an appropriate dry chemical is added to the dryer flue gas.

Recently, Envitech has developed an economical Venturi scrubber that can be either built on a skid for easy transport, or built on a truck bed for portability.  Envitech's Venturi scrubber is capable of meeting even the most stringent PM-10 requirements for particulate control, and works well with downstream blue haze control devices. Our Venturi scrubber is also anti-fouling and capable of consistently meeting control targets even with difficult RAP and exotic formulations with minimal maintenance.   

Topics: particulate control, Venturi scrubbers, Scrubbers

Wet Scrubber Basics

Posted by Andy Bartocci on Tue, Sep 10, 2019 @ 09:02 AM

 

As an equipment supplier of custom engineered wet scrubber equipment, Envitech frequently provides lunch and learns (L&L’s) to engineering companies to help educate engineers about the basics of available technology.

Figure 1 below is a summary chart of predominant wet scrubber technology options. The main product categories include packed bed absorbers, Venturi scrubbers, and wet electrostatic precipitators (WESPs). Each wet scrubber type serves a different purpose and is used in different circumstances. For instance, packed bed absorbers are primarily used to remove gaseous emissions like SO2, HCl, or HF. We often receive packed bed absorber inquiries for particulate removal, however, this would be a misuse of technology. Packed bed absorbers remove some particulate but they are not nearly as efficient as other options.

Figure 1: Wet scrubber technology summaryEnv wet scrubber technologies

Venturi scrubbers are used for particulate removal. Just like we sometimes receive packed bed absorber inquiries for particulate removal, we’ll occasionally get Venturi scrubber inquiries for acid gas removal. This would also be a misuse of technology. Venturi scrubbers achieve some acid gas removal, but they have poor mass transfer compared to a packed bed absorbers.  

Venturi scrubbers use mechanical forces to remove particulate. Particles are captured through a process of impaction between particles in the gas and water droplets in the Venturi throat. A high differential velocity is created between particles and droplets by accelerating the gas in the throat. A pressure drop in the throat provides energy to capture the particles. Smaller particles less than 1 micron in size avoid capture by behaving like gas molecules and finding slip streams around the water droplets. Venturi scrubber performance drops offs exponentially for submicron particulate. Overall removal efficiency may be limited for a gas stream with a high concentration of submicron particulate. Venturi scrubbers are a good choice for industrial dryers or other applications with large size particulate.

Wet electrostatic precipitator (WESP) are the third type of wet scrubber summarized in the table. Like Venturi scrubbers, they are also particulate removal devices. They differ from Venturi scrubbers in a couple of ways, 1.) electrical, not mechanical forces are used to capture particulate, and 2,) they are efficient at capturing submicron particulate. Figure 2 shows a performance comparison between a WESP and Venturi scrubber. It can be seen that performance drops off dramatically for Venturi scrubbers for particles less than 1 micron in size. WESP’s on the other hand remove particles regardless of particle size.

Figure 2: WESP, Venturi scrubber performance comparison versus particle size.

Envitech WESP Venturi Performance

The summary in Figure 1 also shows how each wet scrubber technology differs in regulatory control. A packed bed absorber is typically controlled for recirculation flow rate and liquid pH. A Venturi scrubber is controlled by recirculation rate and pressure drop. A WESP is controlled by voltage. Control limits are typically spelled out in the operating permit.

Finally, some examples of applications are given for each type of wet scrubber. It should be noted that there are many applications that have multiple types of pollutants. A hazardous waste incinerator, for instance, contains particulate, acid gases, and specific heavy metals like cadmium and lead. A fraction of particulate is submicron in size and difficult for a Venturi scrubber to remove. It is common for different types of wet scrubbers to be combined into a multi-pollutant device. Figure 3 shows a common arrangement for an incinerator scrubber. The gas is first cooled in a quencher. A packed bed absorber removes acid gases. A Venturi scrubber removes particulate and a WESP removes the submicron particulate and heavy metals.

Figure 3: Incinerator wet scrubber arrangement

Env wet scrubber arrangement

Wet scrubbers can also be combined with dry scrubbers in certain circumstances. An upstream bag-house can remove particulate followed by a packed bed absorber for acid gas removal. A cyclone can be used to knock out large particulate before using a Venturi scrubber for the remaining particulate. A cyclone helps to minimize blowdown and water consumption. In some cases, a dry filter or carbon bed absorber can be integrated downstream of a wet scrubber for mercury and/or dioxin/furan. Click here to read a blog piece about an example of a wet scrubber combined with a carbon bed.

This about covers wet scrubber basics. If you’re with an engineering company and want to discuss scheduling a lunch an learn, please give Envitech a call. You can click on the icon below for a set of Envitech brochures.

Click on the icon below to download an Envitech brochure.

Download Literature

 

 

Topics: particulate control, Venturi scrubbers, Scrubbers, SO2 Scrubber, wet electrostatic precipitators, Acid Gas, Packed Bed Absorbers, Packed Bed Scrubbers, Wet Scrubbers

Horizontal Venturi Scrubber for Particulate Control

Posted by Andy Bartocci on Mon, Oct 22, 2018 @ 12:21 PM

Venturi scrubbers are mechanical impaction devices that are used to control particulate on a wide range of applications. These include medical and hazardous waste incineration, potash drying, sewage sludge incineration and processing, coal drying, mineral wool manufacturing, and copper roasting to name a few.  In one of my last blog posts I discussed a Venturi collision scrubber used to treat exhaust fumes of a Banbury mixer for rubber compounding.  The Envitech collision scrubber is used in several Goodyear Tire manufacturing facilities around the world.   


Venturi scrubber

A recent new application is a horizontal Venturi scrubber for an aggregate asphalt drum dyer.  The asphalt process is semi-stationary operating at fixed locations for several months at a time. The process is periodically broken down and moved to new locations for operation.  The horizontal arrangement makes the horizontal Venturi scrubber an ideal solution for mobile applications.  The equipment package is transportable on a single flatbed with only minor disassembly required for shipment and installation.  The equipment is mounted onto a skid with pre-assembled piping and wiring to facilitate equipment mobility. 

Particles are captured in the horizontal Venturi scrubber through a process of impaction by water droplets injected into the Venturi throat.  A fraction of particulate laden water becomes entrained in the gas which has a droplet size distribution.  The droplets are removed from the gas by a mist eliminator.   There are two pathways for particles to escape capture by the scrubber. The first is penetration.  Smaller particles lacking the mass for impaction penetrate through the scrubber.  The second is through carry over of particulate laden water droplets.  Droplet capture efficiency, or mist elimination, therefore impacts scrubber efficiency and overall plant emissions.

The horizontal Venturi scrubber uses a damper blade and actuator to maintain constant pressure drop across a wide range of gas flows.  A high efficiency chevron mist eliminator removes particulate laden droplets before the gas exits the scrubber.  A chevron mist eliminator removes greater than 99.9% of water droplets down to 27 microns with less than 0.25 inches W.C. of pressure drop.  By comparison, a cyclonic separator requires several inches W.C. of pressure drop to remove 98% of 27 microns droplets.   The advantages of a chevron mist eliminator are higher performance, larger turn down ratio, and lower pressure drop.

Envitech is currently building two new horizontal Venturi scrubbers sized for 45,000 acfm each for a peat drying operation. The compact design allows the scrubber to be easily installed inside a building. The high level of pre-assembly and lower profile reduces installation time and improves maintenance access for plant personnel.  The horizontal Venturi scrubber can be a cost effective alternative to many processes that use a typical vertical arrangement.

Click on the link below to download Venturi scrubber literature.

 Download Literature

Topics: particulate control, Venturi scrubbers, Scrubbers

Venturi Fume Scrubber for Tire Manufacturing Banbury Mixers

Posted by Andy Bartocci on Wed, Jun 15, 2016 @ 10:53 AM

Venturi Scrubbers are used to control particulate on a wide range of applications including medical and hazardous waste incineration, pot ash mining, sewage sludge processing and incineration, coal drying, textile and mineral wool insulation manufacturing and copper roasting. A previous blog post in April discusses the mechanisms for particulate removal by a Venturi scrubber. One application for Venturi scrubbers is removal of fumes generated by a Banbury mixer. A Banbury mixer is an industrial mixer used in a wide range of applications including food, chemical, pharmaceutical, plastic, mineral, and rubber processing. Venturi fume scrubberBanbury mixers are used, for instance, to compound rubber material for manufacturing automobile tires. Uncontrolled fumes from the mixers can create a nuisance by settling around the facility. Envitech’s Venturi collision scrubber has been used to control these fumes. The figure on the right shows a typical Venturi collision scrubber for a 25,000 cfm mixer exhaust. The scrubber separates the exhaust into two streams internal to the scrubber. The streams are then directed to two opposing Venturi throats. Recirculated water injected into each throat is atomized into fine droplets as the gas is accelerated. Fume particles and droplets collide and are captured by the atomized water as the steams are recombined into a third Venturi throat. A diffusion section redistributes the gas to a horizontal chevron style mist eliminator to remove entrained water droplets. Water is collected and drained into a common sump and recirculated back to the Venturi throats. A blowdown stream purges the collected material.

The scrubber is designed for 24/7, semi-automatic operation and is skid mounted with redundant pumps, one operating and one spare. Instruments are pre-mounted into the piping assembly and pre-wired to a junction box. The systems are often provided with an ID fan which can be mounted on the roof of the building. Typical design conditions and performance are indicated in the table below.

DESIGN VALUE
Flow Rate, acfm Up to 25,000 cfm
Temp, oF 90
Particulate, gr/dscf 0.015
Particle Removal > 99.5%*

*particles > 2.5 microns

Envitech Venturi collision scrubbers have been in operation at several tire manufacturing facilities since the early 80’s. Over 17 systems have been installed including several in recent years.

Click on the icon below to download a case study for Envitech Venturi Collision scrubbers learn how the scrubber solved the emission problems for Goodyear Tire & Rubber Company.

Download Case Study

Topics: particulate control, Venturi scrubbers, Scrubbers

Venturi Scrubber for Glass Furnace

Posted by Andy Bartocci on Tue, Jun 14, 2016 @ 02:14 PM

Venturi Scrubbers are used to control particulate on a wide range of applications including medical and hazardous waste incineration, pot ash mining, sewage sludge processing and incineration, coal drying, tire manufacturing, and copper roasting. One particular application is glass fiber manufacturing which can include both textile fiber and wool fiber insulation. Both types of fibers are manufactured by similar processes which use high-temperature to convert raw materials (predominantly borosilicates) into glass fibers. Emissions control is needed for both glass melting and fiber forming and finishing processes. A survey of stack test data from 10 manufacturing lines at different glass furnace operations demonstrate typical particulate emissions in the range of 0.0035 gr/dscf to 0.015 gr/dscf for volumetric gas flow rates ranging from 20,000 dscfm to 50,000 dscm. Most of these lines use a 10 in. W.C. pressure drop Venturi scrubbers. A few use wet electrostatic precipitators (WESP’s). Stack test data and particle size distribution (PSD) data indicate there can be significant differences in particle size distribution between different glass furnace manufacturing lines which account for the range in outlet concentrations. The figure on the right shows removal efficiency by particle size for a 10” pressure dropEnvitech_10_in_Venturi_curve.jpg Venturi. It indicates that nearly all particles > 2 micron in size are removed by the Venturi. Performance drops off dramatically, however, for smaller particles. Mechanisms for particulate removal by a Venturi scrubber are discussed in more detail in an earlier blog post, dated April 14, 2016.

The image below shows a typical Venturi scrubber used for glass fiber manufacturing facility. The process exhaust gas passes through the Venturi scrubber throat for particulate removal. The Venturi has a variable throat damper that is pneumatically actuated for maintaining the Venturi scrubber Venturi_Scrubber_Flat.jpgpressure drop over a minimum and maximum gas flow rate.  The damper position is governed by proportional-integral-derivative control based on the differential pressure across the throat. 

After the Venturi scrubber throat the gas passes through a flooded elbow and enters a vertical entrainment separator through a tangential inlet. Large water droplets are removed by centrifugal forces by the spin induced by the tangential entry. After passing through internals to smooth the gas flow distribution, the gas passes through a vertical chevron style mist eliminator to remove remaining water droplets from the gas. A spray header provides a periodic wash to keep the chevrons clean from particulate and debris.   Liquid from the Venturi is collected in the entrainment separator sump and re-circulated to the Venturi throat. A blowdown stream is taken from the recirculation line to purge the collected particulate.

Venturi scrubbers have proven to be highly reliable on a wide range of applications, including several collecting fibrous material. Several considerations should be taken into account to design reliability into the system.  A well designed Venturi scrubber can operate continuously with just one or two shifts of maintenance per year. Although Venturi scrubbers are quite common on glass fiber manufacturing lines some sites have relied on wet electrostatic precipitators (WESP) to meet emission limits. This may be driven by a combination of the particle size distribution (PSD) of the process and site specific permit limits. In general, a WESP is used when there is a large fraction of submicron particulate that exceeds the capability of the Venturi scrubber to meet the permit limit. A WESP has higher capital cost, but will have lower operating cost from lower energy consumption.

 

Click on the icon below to view a video of a variable throat Venturi scrubber damper blade.

Free Video

Venturi scrubber

 

Topics: particulate control, Venturi scrubbers, Scrubbers

Carbon Bed Adsorber and Filter Used to Remove Lead (Pb), Dioxin, Furans, and Mercury (Hg) to Meet New Medical Waste Incinerator Emission Limits

Posted by Andy Bartocci on Thu, Apr 14, 2016 @ 05:30 PM

WMC.jpgIn 2009, the US EPA revised the emission limits for the Hospital, Medical, and Infectious Waste Incinerator (HMIWI) MACT standard. You can follow the link to the blog piece published in May 2013 on the new standard. It dramatically reduced the emission limits for several pollutants including particulate (PM), lead (Pb), and dioxins and furans (D/F). Several existing medical waste incinerators in operation at the time were not capable of meeting the new limits, especially for lead (Pb) and/or dioxin and furans (D/F). Cost effective add-on controls were needed to bring existing system into compliance with the new rules and to allow them to continue to operate.

 

To meet this new challenge, Envitech designed a carbon bed adsorber and filter package to be installed downstream of existing wet scrubbers. The package is comprised of a new fan to overcome additional system pressure drop. Heat of compression from the fan and a re-heater duct heats the wet gas above the dew point to prevent condensation fouling in downstream filter and/or carbon bed adsorber. The system is delivered pre-assembled on a skid to reduce installation time and cost. A cartridge filter removes low concentrations of condensed Pb particulate. The carbon bed adsorber removes dioxins, furans and mercury (Hg). Envitech has upgraded four medical waste incinerators to meet the new MACT standards. All four are operational and compliant with the new standards.

In one case for Wyoming Medical Center (WMC), space was limited for add-on controls. The system had to be installed outdoors and capable of withstanding below freezing temperatures. The existing system did not meet the new limits for lead (Pb) and dioxins/furnace (D/F).The add-on controls included a cartridge filter and a carbon bed adsorber. The equipment was insulated and heat traced to maintain temperature above the dew point after re-heat. System features include:

  •  Shop and skid mounted assembly for ease of installation.
  • Insulation and heat tracing for outdoor operation in a cold climate.
  • Silicon controlled rectifier (SCR) controller to control the heater duct.
  • Compressed air pulse cleaning for automatic particulate removal from the cartridge filters.
  • Pre-wired instrumentation to a control box located on the skid.
  • Manways to facilitate maintenance access.

The system has been operational since 2014 and has been used on a routine basis during cold winter months.   The system comfortably passed a stack test in 2015. Compliance for lead (Pd) is 20 times below the limit and Dioxins/Furans (D/F) is 5 times below the limit. The re-heat and filter package has been used on several other medical waste incinerators and provide a cost effective solution for meeting stringent emission limits. 

Download a free case study to find out how Wymoming Medical Center met the new EPA HMIWI emission limits for their existing medical waste incinerator.

Download  Case Study

Download a free white paper from the 2010 Internationa Conference on Thermal Treatment Technologies and Hazardous Waste Combustors (IT3/HWC) on the 2009 HMIWI MACT standard for medicl waste incinerators.

Download Free Paper 

Topics: particulate control, Venturi scrubbers, MACT Standards, Medical Waste Incinerator Scrubber, Incinerator Scrubber, HMIWI Scrubber